[Python爬虫] 七、结构化数据提取之JSON与JsonPATH


往期内容提要:


一、非结构化数据与结构化数据

一般来讲对我们而言,需要抓取的是某个网站或者某个应用的内容,提取有用的价值。内容一般分为两部分,非结构化的数据 和 结构化的数据。

  • 非结构化数据:先有数据,再有结构。
  • 结构化数据:先有结构、再有数据。
  • 不同类型的数据,我们需要采用不同的方式来处理。
处理方式 非结构化数据 结构化数据
正则表达式 文本、电话号码、邮箱地址、HTML 文件 XML 文件
XPath HTML 文件 XML 文件
CSS选择器 HTML 文件 XML 文件
JSON Path JSON 文件
转化成Python类型 JSON 文件(json类)、XML 文件(xmltodict)

在介绍完正则表达式、XPath、CSS选择器后,我们最后在数据提取板块再学习了解结构化数据提取之JSON与JsonPATH。

二、了解JSON

JSON(JavaScript Object Notation) 是一种轻量级的数据交换格式,它使得人们很容易的进行阅读和编写。同时也方便了机器进行解析和生成。适用于进行数据交互的场景,比如网站前台与后台之间的数据交互。

JSON和XML的比较可谓不相上下。

Python 2.7中自带了JSON模块,直接import json就可以使用了。

官方文档:http://docs.python.org/library/json.html

json简单说就是javascript中的对象和数组,所以这两种结构就是对象和数组两种结构,通过这两种结构可以表示各种复杂的结构

  1. 对象:对象在js中表示为{ }括起来的内容,数据结构为 { key:value, key:value, ... }的键值对的结构,在面向对象的语言中,key为对象的属性,value为对应的属性值,所以很容易理解,取值方法为 对象.key 获取属性值,这个属性值的类型可以是数字、字符串、数组、对象这几种。

  2. 数组:数组在js中是中括号[ ]括起来的内容,数据结构为 ["Python", "javascript", "C++", ...],取值方式和所有语言中一样,使用索引获取,字段值的类型可以是 数字、字符串、数组、对象几种。

import-jsonjson 模块提供了四个功能:dumpsdumploadsload,用于字符串 和 python数据类型间进行转换。

在这里插入图片描述

方法 功能
json.loads 把Json格式字符串解码转换成Python对象
json.dumps 实现python类型转化为json字符串,返回一个str对象 把一个Python对象编码转换成Json字符串
json.load 读取文件中json形式的字符串元素 转化成python类型
json.dump 将Python内置类型序列化为json对象后写入文件

(1) json.loads()

把Json格式字符串解码转换成Python对象

# json_loads.py

import json

strList = '[1, 2, 3, 4]'

strDict = '{"city": "北京", "name": "大猫"}'

json.loads(strList)
# [1, 2, 3, 4]

json.loads(strDict) # json数据自动按Unicode存储
# {u'city': u'\u5317\u4eac', u'name': u'\u5927\u732b'}

(2) json.dumps()

实现python类型转化为json字符串,返回一个str对象把一个Python对象编码转换成Json字符串

# json_dumps.py

import json
import chardet

listStr = [1, 2, 3, 4]
tupleStr = (1, 2, 3, 4)
dictStr = {"city": "北京", "name": "大猫"}

json.dumps(listStr)
# '[1, 2, 3, 4]'
json.dumps(tupleStr)
# '[1, 2, 3, 4]'

# 注意:json.dumps() 序列化时默认使用的ascii编码
# 添加参数 ensure_ascii=False 禁用ascii编码,按utf-8编码
# chardet.detect()返回字典, 其中confidence是检测精确度

json.dumps(dictStr)
# '{"city": "\\u5317\\u4eac", "name": "\\u5927\\u5218"}'

chardet.detect(json.dumps(dictStr))
# {'confidence': 1.0, 'encoding': 'ascii'}

print json.dumps(dictStr, ensure_ascii=False)
# {"city": "北京", "name": "大刘"}

chardet.detect(json.dumps(dictStr, ensure_ascii=False))
# {'confidence': 0.99, 'encoding': 'utf-8'}

chardet是一个非常优秀的编码识别模块,可通过pip安装

(3) json.load()

读取文件中json形式的字符串元素 转化成python类型

# json_load.py

import json

strList = json.load(open("listStr.json"))
print strList

# [{u'city': u'\u5317\u4eac'}, {u'name': u'\u5927\u5218'}]

strDict = json.load(open("dictStr.json"))
print strDict
# {u'city': u'\u5317\u4eac', u'name': u'\u5927\u5218'}

(4) json.dump()

将Python内置类型序列化为json对象后写入文件

# json_dump.py

import json

listStr = [{"city": "北京"}, {"name": "大刘"}]
json.dump(listStr, open("listStr.json","w"), ensure_ascii=False)

dictStr = {"city": "北京", "name": "大刘"}
json.dump(dictStr, open("dictStr.json","w"), ensure_ascii=False)

(5) Json豆瓣爬虫

# coding=utf-8
import requests
import json

class DoubanSpider:
    def __init__(self):
        self.url_temp_list = [
            {
                "url_temp": "https://m.douban.com/rexxar/api/v2/subject_collection/filter_tv_american_hot/items?start={}&count=18&loc_id=108288",
                "country": "US"
            },
            {
                "url_temp": "https://m.douban.com/rexxar/api/v2/subject_collection/filter_tv_english_hot/items?start={}&count=18&loc_id=108288",
                "country": "UK"
            },
            {
                "url_temp": "https://m.douban.com/rexxar/api/v2/subject_collection/filter_tv_domestic_hot/items?start={}&count=18&loc_id=108288",
                "country": "CN"
            }
        ]
        self.headers = {
            "User-Agent": "Mozilla/5.0 (Linux; Android 5.1.1; Nexus 6 Build/LYZ28E) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/63.0.3239.84 Mobile Safari/537.36"}

    def parse_url(self, url):  # 发送请求,获取响应
        print(url)
        response = requests.get(url, headers=self.headers)
        return response.content.decode()

    def get_content_list(self, json_str):  # 提取是数据
        dict_ret = json.loads(json_str)    # 将json文件转化为Python文件
        content_list = dict_ret["subject_collection_items"]
        total = dict_ret["total"]
        return content_list, total

    def save_content_list(self, content_list,country):  # 保存
        with open("douban.txt", "a", encoding="utf-8") as f:
            for content in content_list:
                content["country"] = country
                f.write(json.dumps(content, ensure_ascii=False))
                f.write("\n")  # 写入换行符,进行换行
        print("保存成功")

    def run(self):  # 实现主要逻辑
        for url_temp in self.url_temp_list:
            num = 0
            total = 100  # 假设有第一页
            while num < total + 18:
                # 1.start_url
                url = url_temp["url_temp"].format(num)
                # 2.发送请求,获取响应
                json_str = self.parse_url(url)
                # 3.提取是数据
                content_list, total = self.get_content_list(json_str)

                # 4.保存
                self.save_content_list(content_list,url_temp["country"])
                # if len(content_list)<18:
                #     break
                # 5.构造下一页的url地址,进入循环
                num += 18

if __name__ == '__main__':
    douban_spider = DoubanSpider()
    douban_spider.run()
    

三、JsonPath

JsonPath 是一种信息抽取类库,是从JSON文档中抽取指定信息的工具,提供多种语言实现版本,包括:Javascript, Python, PHP 和 Java。

JsonPath 对于 JSON 来说,相当于 XPATH 对于 XML。

下载地址:https://pypi.python.org/pypi/jsonpath

安装方法:点击Download URL链接下载jsonpath,解压之后执行python setup.py install

官方文档:http://goessner.net/articles/JsonPath

(1) JsonPath与XPath语法对比:

Json结构清晰,可读性高,复杂度低,非常容易匹配,下表中对应了XPath的用法。

XPath JSONPath 描述
/ $ 根节点
. @ 现行节点
/ .or[] 取子节点
.. n/a 取父节点,Jsonpath未支持
// .. 就是不管位置,选择所有符合条件的条件
* * 匹配所有元素节点
@ n/a 根据属性访问,Json不支持,因为Json是个Key-value递归结构,不需要。
[] [] 迭代器标示(可以在里边做简单的迭代操作,如数组下标,根据内容选值等)
| [,] 支持迭代器中做多选。
[] ?() 支持过滤操作.
n/a () 支持表达式计算
() n/a 分组,JsonPath不支持

(2) 示例:

我们以拉勾网城市JSON文件 为例,获取所有城市。

# jsonpath_lagou.py

import requests
import jsonpath
import json
import chardet

url = 'http://www.lagou.com/lbs/getAllCitySearchLabels.json'
response = equests.get(url)
html = response.text

# 把json格式字符串转换成python对象
jsonobj = json.loads(html)

# 从根节点开始,匹配name节点
citylist = jsonpath.jsonpath(jsonobj,'$..name')

print citylist
print type(citylist)
fp = open('city.json','w')

content = json.dumps(citylist, ensure_ascii=False)
print content

fp.write(content.encode('utf-8'))
fp.close()

后期内容提要:


如果您有任何疑问或者好的建议,期待你的留言与评论!

©️2020 CSDN 皮肤主题: 代码科技 设计师: Amelia_0503 返回首页
实付0元
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值